Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields
نویسندگان
چکیده
6 Rotation invariance is an important property for operators on tensor fields, but up to now, most methods for morphology on tensor fields had to either sacrifice rotation invariance, or do without the foundation of mathematical morphology: a lattice structure. Recently, we proposed a framework for rotation-invariant mathematical morphology on tensor fields that does use a lattice structure. In addition, this framework can be derived systematically from very basic principles. Here we show how older methods for morphology on tensor fields can be interpreted within our framework. On the one hand this improves the theoretical underpinnings of these older methods, and on the other this opens up possibilities for improving the performance of our method. We discuss commonalities and differences of our method and two methods developed by Burgeth et al.
منابع مشابه
Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering
The operators of greyscale morphology rely on the notions of maximum and minimum which regrettably are not directly available for tensor-valued data since the straightforward component-wise approach fails. This paper aims at the extension of the maximum and minimum operations to the tensor-valued setting by employing the Loewner ordering for symmetric matrices. This prepares the ground for matr...
متن کاملMathematical Morphology for Tensor Data Induced by the Loewner Ordering in Higher Dimensions
Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological opera...
متن کاملWOVEN FRAMES IN TENSOR PRODUCT OF HILBERT SPACES
The tensor product is the fundemental ingredient for extending one-dimensional techniques of filtering and compression in signal preprocessing to higher dimensions. Woven frames play a crucial role in signal preprocessing and distributed data processing. Motivated by these facts, we have investigated the tensor product of woven frames and presented some of their properties. Besides...
متن کاملMorphology for Color Images via Loewner Order for Matrix Fields
Mathematical morphology is a very successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of a maximum and a minimum with respect to an order. Many operators constructed from dilation and erosion are available for grey value images, and recently useful analogs of these processes for matrix...
متن کاملOrder Based Morphology for Color Images via Matrix Fields
Mathematical morphology is a successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of supremum and infimum with respect to an order. From dilation and erosion one can build readily other useful elementary morphological operators and filters, such as opening, closing, morphological top-ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 47 شماره
صفحات -
تاریخ انتشار 2014